UHI & human heat-stress values during the July 2006 Portland, Oregon heat wave

Andrew Melford
Robert Bornstein (presenter)
Dept. of Meteorology
San Jose State University
San Jose, CA, USA
pblmodel@hotmail.com

Presented at the

2nd International Conf. on Countermeasures to UHIs

Berkeley, CA

Sept 2009

Outline

- Summary of PSU (D. Sailor) NSF project (funding source)
- Data
- Results
 - Synoptic forcing
 - Urban Heat Island (UHI) patterns
 - Heat Index (HI) values
- Conclusion

PSU NSF Multidisciplinary Project

- 50% air pollution met & modeling (D. Sailor,
 H. Taha, & SJSU)
- 50% social science phone-bank outreach re air quality & heat wave health-warnings

SJSU Research Questions

- What were the synoptic causes of the 2006 Portland heat-wave?
- What were the mesoscale variations across the Portland area of
 - observed urban heat island (UHI) temperatures
 - calculated heat index (HI) values?
- How did mesoscale HI values compare with NWS HI values?

Portland, Oregon, shown as *

- · in Willamette Valley
- urban area: 376 km²
- mean elevation (at Airport) = 15 m MSL

Portland Climate Summary

- Winter: Mild, cloudy rainy periods with good mixing & SE winds (next table), punctuated by colder stagnant, light winds. Highs mostly in the 30s & 40s.
- Spring: Transitional time. March & April are wet and cool, while May & June are drier. Generally good mixing. Highs mostly in the 60s and 70s.
- Summer: Mild to warm, with high temps from 70s to 90s.
 Persistent NW afternoon winds bring cleansing, cooling sea breeze. Much less rain than other seasons.
- Fall: Autumn is reverse of spring, with many warm days in Sept. By mid-Oct, rains increase. Cooler temps, with afternoon highs in 50s & 60s. Stagnant periods between storms are frequent, during which fog can persist for several days.

Portland Wind Direction Frequencies (%)

Period of Record: October 1940 - May 1999

month/ LST		Calm	N	NNE	NE	ENE	E	ESE	SE	SSE	s	SSW	sw	WS	w	WN	NW	NNW
Jan	07	12.4	1.3	0.6	1.4	2.5	7.8	23.4	12.6	4.3	8.0	8.2	3.8	2.1	2.7	3.4	2.9	2.2
	13	4.8	1.9	0.8	1.4	1.9	9.3	22.9	12.2	3.5	7.1	10.7	5.4	3.3	3.8	5.4	3.8	2.1
	19	9.1	0.8	0.4	0.8	2.0	8.3	31.4	14.5	3.4	7.5	7.9	4.3	1.9	2.3	2.3	1.9	1.2
Jul	07	10.6	12.9	4.2	2.5	2.1	2.0	3.2	2.1	3.0	4.5	3.2	1.6	2.1	3.1	8.0	16.1	
	13	1.7	7.9	3.6		2.5	1.8	0.9	0.5	0.8	2.5	2.3	2.3	3.4	7.6	22.5	22.5	15.5
	19	1.2	9.9	1.3	0.5	0.8	1.4	1.0	0.8	0.4	1.4	0.9	1.0	1.9	2.9	7.5	31.3	36.6

SOURCE: NWS, Portland, Oregon (via Mike Voss, SJSU)

Portland Air Quality Index (AQI) for 2004

Improved PM: due to tighter controls & thus reduced emissions.

Figure 20a. PM₁₀ trend for NW Oregon cities using the second highest 24 hr average.

O₃: drop smaller, as controls & reduced emissions have been offset by increased population

Figure 22. Ozone trend using the three year average of fourth highest eight hour ozone value.

Portland heat wave data: 20-27 July 2006

- NWS 850 hPa & surface charts
- Satellite 250 hPa winds
- Sfc obs from a NWS site & 12 meso-net sites (next map)
 - Temperature at 12 sites
 - Relative Humidity at only 4 sites
- Data in original NWS units for publication in Weatherwise
- Simple HI values are calculated, as this is what NWS uses operationally
- Kalkstein HI requires long term data sets not available for Portland meso-met sites

12 meso-sites with temp data (circles) + NWS Air Port site

Meso-Sites

Canby – CNB

Stoller - STO

Reynolds – REY

Estacada - ESH

Westview – WVW

Spangler Road – SPR

SE Lafayette – SEC

Oregon Episopical – OES

PSU - Portland State

Benson - BEN

Sauvie Island - SVI

Eq. for HI (⁰F) uses data from the 13 sites (tabular form of Eq is in next graph)

$$|H| = c_1 + c_2 \cdot T + c_3 \cdot R + c_4 T \cdot R + c_5 \cdot T^2 + c_6 \cdot R^2 + c_7 \cdot T^2 \cdot R + c_8 \cdot T \cdot R^2 + c_9 \cdot T^2 \cdot R^2$$

where

 $T = temp (^{0}F)$

R = relative humidity (%)

 $c_1 = -42.379 ({}^{0}F)$

 $c_2 = 2.04901523$

 $c_3 = 10.14333127 (^{0}F)$

 $c_4 = -0.22475541 ({}^{0}F)$

 $c_5 = -6.83783 \times 10^{-3} (1/{}^{0}F)$

 $c_6 = -5.481717 \times 10^{-2} \, (^{\circ}F)$

 $c_7 = 1.22874 \times 10^{-3} (1/{}^{0}F)$

 $c_8 = 8.5282 \times 10^{-4}$

 $c_9 = -1.99 \times 10^{-6} (1/{}^{0}F)$

HI $({}^{0}F) = f(T, RH)$; table from NOAA website

- Numbers in blue box = HI values < observed Temp
- HI only calculated for T > 75 F

Synoptic Summary 1: unusually warm 850 hPa air mass (associated with four-corners high) gradually moves northward to Oregon, producing weak onshore flow & 4-day heat wave (Red regions = T > 320F)

07/2: RH = 23%; V = 13 mph; Scattered Clouds Max-UHI is west of river

07/23: RH = 33%, V = 8 mph, few clouds Overall temps increase

07/22: RH = 52% (max); V = 0 mph; (max coverage) broken clouds, Left UHI weakens; right one strengthens

07/24: RH = 33% V = 11 mph, clear skies. Left UHI advected to S; right UHI intensifies further

Results 2: RH (t) for the 4 meso-sites with RH obs (& their average) + NWS value (shown as Δ); fairly uniform values across sites; high daytime values

Results 3: T (t) for 12 meso-met sites + NWS site (shown as Δ)

Results 4: HI (t) values for meso sites + NWS site (Note: orig-T must be ≥75 F to get HI-value)

Results 5: D(t)=HI(t) -T(t) values for meso sites + NWS site Note: low-T & low-RH (see NWS table, above) \rightarrow D < 0

Summary

- Portland generally has mild summer temps & good air quality
- Synoptic/GC conditions during a four day period in July 2006, however, produced heat wave & poor air quality (not shown). Met factors included:
 - Warm-moist air advection
 - Heavy cloud cover & thus high nighttime RH
- Daytime temps were high (max of 111°F), and remained high (min of 75°F) during nite of 21st-22nd, due to increased cloud cover

Summary (cont.) & Recommendations

- Portland daytime UHIs were bisected by its river
- Daytime 22 July had the largest
 - UHI (13⁰F)
 - difference b/t a HI- & a T-value (26°F)
 - Underestimated HI value (30°F = 126-96°F); only experienced by people near this one site

Recommendations

- Weather forecasts (& forecast models) need to be "urbanized;" e.g., by Taha-Martilli scheme in uMM5
- Urban HI-forecasts must be "urbanized," by use of observed or "statistical" UHI values

Thanks for listening QUESTIONS?